Colorimetric Detection of Hg(II) Ion Using Silver Nanoparticles Capped with 3-Hydroxybenzoic Acid

PDF
Full Text
Gusrizal Gusrizal, Andi Hairil Alimuddin, Ajuk Sapar, Rizki Noviani Ridwan, Sri Juari Santosa

Abstract


In this paper, we report for the first time thesimple method for detection of Hg(II) ion in anaqueousmedium using silver nanoparticles capped with 3-hydroxybenzoic acid. Silver nanoparticles capped with 3-hydroxybenzoic acid were preparedby reduction of the silver ion with 3-hydroxybenzoic acid and without surface functionalization. The formation of silver nanoparticles was characterized by a UV-Visible spectrophotometer. The yellowcolloid of prepared silver nanoparticles capped with 3-hydroxybenzoic acid showed a surface plasmon resonance peak at 420 nm. The ability of silver nanoparticles capped with 3-hydroxybenzoic acid in detection was tested by doing a reaction with several metal ions individually(Na(I), K(I), Cu(II), Zn(II), Ca(II), Mg(II), Hg(II), Mn(II), Ni(II), Pb(II), and Co(II)). It was foundthat silver nanoparticles capped with 3-hydroxybenzoic acid highly selective toHg(II) and then the prepared silver nanoparticles were developedfor detection of Hg(II) ion. Addition of 1 mL Hg(II) ion into 4mL the as-preparedsilver nanoparticles reducedthe peak of surface plasmon resonance spectra, andthe reduction of peak intensity was proportional to the concentration of Hg(II) ion. A goodlinear relationship (R2= 0.998) between absorbance at 420 nm and concentrationof Hg(II) over the range 1.0x10-3to 5.5x10-3M was obtained. Silver nanoparticles capped with 3-hydroxybenzoic acid were highly sensitive to Hg (II) ion with the detection limit down to 4.7x10-5M. Application the method to the real water sample showed the excellentresult with recovery ranged from 98 to 101%. The proposed method was found to be useful forthe colorimetric detection of Hg(II) ion in an aqueousmedium.

Keywords


3-hydroxybenzoic acid, colorimetry, Hg(II), nanoparticles, silver



DOI: http://dx.doi.org/10.20884/1.jm.2019.14.1.460

Metric logoArticle Metrics


This article has been viewed: 1175 (times)
PDF file viewed / downloaded: 816 (times)

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Molekul

Logo Unsoed

Molekul

Jurnal Ilmiah Kimia
Department of Chemistry, Faculty of Mathematics and Natural Sciences,
Universitas Jenderal Soedirman, Purwokerto, Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.