Time-Kill Assay of 4-Hydroxypanduratin A Isolated from Kaempferia Pandurata Against Foodborne Pathogens

PDF
Full Text
Soerya Dewi Marliyana, Didin Mujahidin, Yana M Syah, Yaya Rukayadi

Abstract


Time–kill assay was performed for 4-hydroxypanduratin A that was isolated from Kaempferia pandurata rizhome against four important foodborne pathogens, namely Bacillus cereus ATCC 21772, Bacillu subtilis ATCC 6633, Staphylococcus aureus ATCC 29737,  and  Proteus mirabilis ATCC 21100. The methods have been investigated in term of Minimum Inhibitory Concentration (MIC) and killing time curve using methods of Clinical and Laboratory Standards Institute (CLSI) guidelines. The results showed that 4-hydroxypanduratin A rapid acting in killing bacteria as follow: B. cereus : 1×MIC for 4 h, P. mirabilis: 4×MIC for 0.5 h, meanwhile  B. subtilis and S. aureus were 1×MIC for 2 h. In conclusion, 4-hydroxypanduratin A showed strong antimicrobial activity against four important foodborne pathogens.


Keywords


time-kill assay, 4-hydroxypanduratin A, foodborne pathogens

References


Brehm-Stecher, B.F. and Johnson, E.A. (2003). Sensitization of Staphylococcus aureus and Escherichia coli to antibiotics by the sesquiterpenoids nerolidol, farnesol, bisabolol, and apritone. Antimicrobial Agents and Chemotherapy, 47 (10), 3357 - 3360.

Cheenpracha, S., Karalai, C., Ponglimanont, C., Subhadhirasakul, S., Tewtrakul, S. (2006). Anti-HIV-1 protease activity of compounds from Boesenbergia pandurata. Bioorg Med Chem, 14, 1710 -1714.

Cushine, T.P.M., and Lamb, A.J. (2011). Recent advances in understanding the antibacterial properties of flavonoids. Int. J. Antimicrob. Agents, 38, 99 -107

Doss, A., Mubarack, H.M., Dhanabalan, R. (2009). Pharmacological importance of Solanum trilobatum. Indian J. Sci. Technol., 2, 41- 43.

Edeoga, H.O., Okwu, D.E., and Mbaebie, B.O. (2005). Phytochemical constituents of some Nigerian medicinal plants. African Journal of Biotechnology, 4 (7), 685 - 688,.

Faizi, S., Khan, R.A., Azher, S., Khan. S.A., Ahmad, T.S.A. (2003). New antimicrobial alkaloids from the roots of Polyalthia longifolia var. Pendula. Planta Med., 69, 350 - 355.

Fonseca, A.P., Estrela, F.T., Moraes, Th.S., Carneiro, L.J., Bastos, J.K., Dos Santos, R.A., Ambrósio, S.R., Martins, C.H.G., and Veneziani, R.C.S. (2013). In Vitro Antimicrobial Activity of Plant-Derived Diterpenes against Bovine Mastitis Bacteria. Molecules, 18, 7865 - 7872.

Funatogawa, K.; Hayashi, S.; Shimomura, H.; Yoshida, T.; Hatano, T.; Ito H.; Hirai, Y. (2004). Antibacterial activity of hydrolyzable tannins derived from medicinal plants against Helicobacter pylori. Microbiol. Immunol., 48, 251-261.

Gibbons, S. (2008). Phytochemicals for bacterial resistance—Strengths, weaknesses and opportunities. Planta. Med., 74, 594 - 602.

Gould, I.M. (2008). The epidemiology of antibiotic resistance. Int. J. Antimicrob. Agents, 32(Suppl. 1), S2.

Karaman, I., Sahin, F., Gulluce, M., Ogutcu, H., Sngul, M., Adiguzel, A. (2003). Antimicrobial activity of aqueous and methanol extracts of Juniperus oxycedrus L. J. Ethnopharmacol. 85, 231–235.

Lewis, K., and Ausubel, F.M. (2006). Prospects for plant-derived antibacterials. Nature Biotechnology, 24 (12), 1504 -1507.

Lu, Y., Zhao, Y.P., Wang, Z.C., Chen, S.Y., and Fu, C.X. (2007). Composition and antimicrobial activity of the essential oil of Actinidiamacrosperma from China. Natural Product Research, 21 (3), 227 - 233.

Mandalari, G., Bennett, R.N., Bisignano, G., Tombetta, D., Saija, A., Faulds, C.B.,Gasson, M.J., Narbad, A. (2007). Antimicrobial activity of flavonoids extracted from bergamot (Citrus bergamia Risso) peel, a byproduct of the essential oil industry. J. Appl. Microbiol., 103, 2056 - 2064.

Marliyana, S.D., Rukayadi, Y., Ismail, I.S., Mujahidin, D., and Syah, Y.M. (2015). Inhibitory properties of panduratin A and 4-hydroxypanduratin A isolated Kaempferia pandurata against some pathogenic bacteria. Current Topics in Toxicology, 11, 23 - 28.

Nawrot, R., Lesniewicz, K., Pienkowska, J., and Gozdzicka-Jozefiak, A. (2007). A novel extracellular peroxidase and nucleases from amilky sap of Chelidonium majus. Fitoterapia, 78 (7-8), 496 – 501.

Negi, P.S. (2012). Plant extracts for the control of bacterial growth: Efficacy, stability and safety issues for food application. International Journal of Food Microbiology, 156 (1), 7-17.

Pepeljnjak, S., Kalodera, Z., Zoyko, M. (2005). Antimicrobial activity of flavonoids from Pelargonium radula (Cav.) L’Herit. Acta Pharmaceut., 55, 431- 435.

Rios, J.L. and Recio, M.C. (2005). Medicinal plants and antimicrobial activity. J. Ethnopharmacol, 100, 80 - 84.

Røssland, E., Langsrud, T., and Sørhaug, T. (2005). Influence of controlled lactic fermentation on growth and sporulation of Bacillus cereus in milk. International Journal of Food Microbiology, 103 (1), 69 -77.

Rukayadi, Y., Han, S., Yong, D., and Hwang, J.K. (2010). In Vitro Antibacterial Activity of Panduratin A against Enterococci Clinical Isolates. Biol. Pharm. Bull., 33 (9), 1489 -1493.

Rukayadi, Y., Lee, K., Han, S., Yong, D., and Hwang, J. K. (2009). In Vitro Activities of Panduratin A against Clinical Staphylococcus Strains. Antimicrobial Agents and Chemotherapy, 53, 4529 - 4532.

Saleem, M., Nazir, M., Ali, M.S., Hussain, H., Lee, Y.S., Riaza, N., and Jabbar, A. (2010). Antimicrobial natural products: an update on future antibiotic drug candidates. Nat. Prod. Rep., 27, 238 - 254.

Shindo, K., Kato, M., Kinoshita, A., Kobayashi, A., Koike, Y. (2006). Analysis of antioxidantactivities contained in the Boesenbergia pandurata Schult. Rhizome. Biosci Biotechnol Biochem, 70, 2281 - 2284.

Tam, V.H., Schilling, A.N., Nikolaou, M. (2005). Modelling time-kill studies to discern the pharmacodynamics of meropenem. J. Antimicrob Chemother, 55, 699 - 706.

Trakoontivakorn, G., Nakahara, K., Shinmoto, H., Takenaka, M., Onishi-Kameyama, M., Ono, H. (2001). Structural analysis of a novel antimutagenic compound, 4-hydroxypanduratin A, and the antimutagenic activity of flavonoids in a Thaispice, fingerroot (Boesenbergia pandurata Schult.) against mutagenic heterocyclicamines. J Agric Food Chem, 49, 3046 - 3050.

Win, N.N., Awale, S., Esumi, H., Tezuka, Y., Kadota, S. (2008). Panduratins D-I, novel secondary metabolites from rhizomes of Boesenbergia pandurata. Chemical and Pharmaceutical Bulletin, 56 (4), 491- 496.

World Health Organization, World Health Report, 2015, http://www.who.int/campaigns/world-health-day/




DOI: http://dx.doi.org/10.20884/1.jm.2017.12.2.363

Metric logoArticle Metrics


This article has been viewed: 1800 (times)
PDF file viewed / downloaded: 739 (times)

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Molekul

Logo Unsoed

Molekul

Jurnal Ilmiah Kimia
Department of Chemistry, Faculty of Mathematics and Natural Sciences,
Universitas Jenderal Soedirman, Purwokerto, Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.